• ASTM D6282/D6282M-14

ASTM D6282/D6282M-14

Standard Guide for Direct Push Soil Sampling for Environmental Site Characterizations (Withdrawn 2023)

ASTM International, 05/01/2014

Publisher: ASTM

File Format: PDF

$38.00$76.00


Published:01/05/2014

Pages:20

File Size:1 file , 940 KB

Note:This product is unavailable in Russia, Ukraine, Belarus

1.1 This guide addresses direct push soil samplers, which may also be driven into the ground from the surface or through prebored holes. The samplers can be continuous or discrete interval units. Samplers are advanced by static push, or impacts from hammers, or vibratory methods, or a combination thereof, to the depth of interest. Both single tube and dual (double) tube systems may be advanced for soil sampling with direct push methods. Direct push methods are most often used to collect geo-environmental soil samples. These soil samples are used for soil classification (Practice D2488) and lithologic/hydrostratigraphic logging as well as being sub-sampled for contaminant and chemical analyses.

1.2 Other drilling and sampling methods may apply for samples needed for engineering and construction applications. This guide does not address single sampling events in the immediate base of the drill hole using rotary drilling equipment that employ cuttings removal as the sampler is advanced. Other sampling standards, such as Test Method D1586, Practices D1587 and D3550, and summarized in Guide D6169 apply to rotary drilling activities (Guide D6286). The guide does not cover open chambered samplers operated by hand such as augers, agricultural samplers operated at shallow depths, or side wall samplers.

1.2.1 While Sonic Drilling is considered a direct push method this standard may not apply to larger equipment addressed in Practice D6914.

1.3 Guidance on collection and handling of samples, are given in Practices D4220 and D6640. Samples for chemical analysis often must be subsampled and preserved for chemical analysis using special techniques such as Practice D4547, D6418, and D6640. Additional information on environmental sample preservation and transportation is available in other references (1, 2, 3, 4, 5, 6)2. Samples for soil classification may be preserved using procedures given in Practice D4220 similar to Class A. In most cases, a direct push sample is considered as Class B in Practice D4220 but is protected, representative, and suitable for chemical analysis. The samples taken with this practice do not usually produce Class C and D (with exception of thin wall samples of standard size) samples for laboratory testing for engineering properties, such as shear strength and compressibility. If sampling is for chemical evaluation in the Vadose Zone, consult Guide D4700 for any special considerations.

1.4 Insertion methods described include static push, impact, percussion, other vibratory/sonic driving, and combinations of these methods using direct push equipment adapted to drilling rigs, cone penetrometer units, and specially designed percussion/direct push combination machines. Hammers providing the force for insertion include drop style, hydraulically activated, air activated and mechanical lift devices.

1.5 Direct push soil sampling is limited to soils and unconsolidated materials that can be penetrated with the available equipment. The ability to penetrate strata is based on hammer energy, carrying vehicle weight, compactness of soil, and consistency of soil. Penetration may be limited or damage to samplers and conveying devices can occur in certain subsurface conditions, some of which are discussed in 5.6. Successful sample recovery also may be limited by the ability to retrieve tools from the borehole. Sufficient retract force must be available when attempting difficult or deep investigations.

1.6 This guide does not address the installation of any temporary or permanent soil, groundwater, vapor monitoring, or remediation devices.

1.7 The practicing of direct push techniques may be controlled by local regulations governing subsurface penetration. Certification, or licensing requirements, or both, may need to be considered in establishing criteria for field activities.

1.8 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1.10 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a projects's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

More ASTM standard pdf

ASTM D287-92(2000)e1

ASTM D287-92(2000)e1

Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method)

$26.00 $52.00

ASTM A679/A679M-00

ASTM A679/A679M-00

Standard Specification for Steel Wire, High Tensile Strength, Cold Drawn

$25.00 $50.00

ASTM C861-93(2000)

ASTM C861-93(2000)

Standard Practice for Determining Metric Dimensions of Standard Series Refractory Brick and Shapes

$25.00 $50.00

ASTM E1083-00

ASTM E1083-00

Standard Test Method for Sensory Evalution of Red Pepper Heat

$25.00 $50.00