Your shopping cart is empty!
ASTM International, 10/15/2016
Publisher: ASTM
File Format: PDF
$33.00$67.00
Published:15/10/2016
Pages:19
File Size:1 file , 430 KB
Note:This product is unavailable in Russia, Ukraine, Belarus
1.1 This test method covers the determination of the boiling point distribution and cut point intervals of crude oils and residues by using high temperature gas chromatography. The amount of residue (or sample recovery) is determined using an external standard.
1.2 This test method extends the applicability of simulated distillation to samples that do not elute completely from the chromatographic system. This test method is used to determine the boiling point distribution through a temperature of 720 °C. This temperature corresponds to the elution of n-C100.
1.3 This test method is used for the determination of boiling point distribution of crude oils. This test method uses capillary columns with thin films, which results in the incomplete separation of C4-C8 in the presence of large amounts of carbon disulfide, and thus yields an unreliable boiling point distribution corresponding to this elution interval. In addition, quenching of the response of the detector employed to hydrocarbons eluting during carbon disulfide elution, results in unreliable quantitative analysis of the boiling distribution in the C4-C8 region. Since the detector does not quantitatively measure the carbon disulfide, its subtraction from the sample using a solvent-only injection and corrections to this region via quenching factors, results in an approximate determination of the net chromatographic area. A separate, higher resolution gas chromatograph (GC) analysis of the light end portion of the sample may be necessary in order to obtain a more accurate description of the boiling point curve in the interval in question as described in Test Method D7900 (see Appendix X1).
1.4 This test method is also designed to obtain the boiling point distribution of other incompletely eluting samples such as atmospheric residues, vacuum residues, etc., that are characterized by the fact that the sample components are resolved from the solvent.
1.5 This test method is not applicable for the analysis of materials containing a heterogeneous component such as polyesters and polyolefins.
1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 8.
Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
$47.00 $94.00
Standard Terminology for Engine Coolants
$26.00 $52.00
Standard Test Method for The Un-notched, Constant Ligament Stress Crack Test (UCLS) for HDPE Materials Containing Post- Consumer Recycled HDPE
$34.00 $68.00
Standard Specification for Copper-Iron Alloy Plate, Sheet, Strip, and Rolled Bar
$30.00 $60.00