Your shopping cart is empty!
ASTM International, 12/01/2014
Publisher: ASTM
File Format: PDF
$34.00$68.00
Published:01/12/2014
Pages:8
File Size:1 file , 120 KB
Note:This product is unavailable in Russia, Ukraine, Belarus
1.1 This guide covers methods for selection and application of coal combustion products (CCPs) for use in the chemical stabilization of trace elements in wastes and wastewater. These elements include, but are not limited to, arsenic, barium, boron, cadmium, chromium, cobalt, lead, molybdenum, nickel, selenium, vanadium, and zinc. Chemical stabilization may be accompanied by solidification of the waste treated. Solidification is not a requirement for the stabilization of many trace elements, but does offer advantages in waste handling and in reduced permeability of the stabilized waste.
1.1.1 Solidification is an important factor in treatment of wastes and especially wastewaters. Solidification/Stabilization (S/S) technology is often used to treat wastes containing free liquids. This guide addresses the use of CCPs as a stabilizing agent without the addition of other materials; however, stabilization or chemical fixation may also be achieved by using combinations of CCPs and other products such as lime, lime kiln dust, cement kiln dust, cement, and others. CCPs used alone or in combination with other reagents promote stabilization of many inorganic constituents through a variety of mechanisms. These mechanisms include precipitation as carbonates, silicates, sulfates, and so forth; microencapsulation of the waste particles through pozzolanic reactions; formation of metal precipitates; and formation of hydrated phases (1-4).2 Long-term performance of the stabilized waste is an issue that must be addressed in considering any S/S technology. In this guide, several tests are recommended to aid in evaluating the long-term performance of the stabilized wastes.
1.2 The CCPs that are suited to this application include fly ash, spent dry scrubber sorbents, and certain advanced sulfur control by-products from processes such as duct injection and fluidized-bed combustion (FBC).
1.3 The wastes or wastewater, or both, containing the problematic inorganic species will likely be highly variable, so the chemical characteristics of the waste or wastewater to be treated must be determined and considered in the selection and application of any stabilizing agent, including CCPs. In any waste stabilization process, laboratory-scale tests for compatibility between the candidate waste or wastewater for stabilization with one or more selected CCPs and final waste stability are recommended prior to full-scale application of the stabilizing agent.
1.4 This guide does not intend to recommend full-scale processes or procedures for waste stabilization. Full-scale processes should be designed and carried out by qualified scientists, engineers, and environmental professionals. It is recommended that stabilized materials generated at the full-scale stabilization site be subjected to testing to verify laboratory test results.
1.5 The utilization of CCPs under this guide is a component of a pollution prevention program; Guide E1609 describes pollution prevention activities in more detail. Utilization of CCPs in this manner conserves land, natural resources, and energy.
1.6 This guide applies only to CCPs produced primarily from the combustion of coal. It does not apply to ash or other combustion products derived from the burning of waste; municipal, industrial, or commercial garbage; sewage sludge or other refuse, or both; derived fuels; wood waste products; rice hulls; agricultural waste; or other noncoal fuels.
1.7 Regulations governing the use of CCPs vary by state. The user of this guide has the responsibility to determine and comply with applicable regulations.
1.8 It is recommended that work performed under this guide be designed and carried out by qualified scientists, engineers, and environmental professionals.
1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Standard Guide for Examination of Mechanical Checkwriter Impressions (Withdrawn 2017)
$25.00 $50.00
Standard Test Method for Quantitating Non-UV-Absorbing Nonvolatile Extractables from Microwave Susceptors Utilizing Solvents as Food Simulants
Standard Specification for Copper-Zinc-Tin and Copper-Zinc-Tin-Iron-Nickel Alloys Plate, Sheet, Strip, and Rolled Bar
$30.00 $60.00
Standard Test Method for Determination of Relative Density and Absorption of Fine, Coarse and Blended Aggregate Using Combined Vacuum Saturation and Rapid Submersion