Your shopping cart is empty!
ASTM International, 02/01/2014
Publisher: ASTM
File Format: PDF
$30.00$60.00
Published:01/02/2014
Pages:8
File Size:1 file , 110 KB
Note:This product is unavailable in Russia, Ukraine, Belarus
1.1 In harmony with the Joint Committee for Guides in Metrology (JCGM) and detection concepts of the International Union of Pure and Applied Chemistry (IUPAC) (1, 2, 3)2, this test method uses a series of replicated measurements of an analyte at dosage levels giving instrumental responses that bracket the critical value, a truncated normal distribution model, and confidence bounds to establish a standard for determining practical and statistically robust limits of detection to analytes sampled on swabs by explosive trace detectors (ETDs).
1.2 Here, the limit of detection (LOD90) is defined to be the lowest mass of a particular compound deposited on a sampling swab for which there is 90 % confidence that a single measurement in a particular ETD will have a true detection probability of at least 90 % and a true nondetection probability of at least 90 % when measuring a process blank sample.
1.3 This particular test method was chosen on the basis of reliability, practicability, and comprehensiveness across tested ETDs, analytes, and deployment conditions. The calculations involved in this test method are published elsewhere (4), and may be performed consistently with an interactive web-based tool available on the National Institute of Standards and Technology (NIST) site: http://pubapps.nist.gov/loda.
1.4 Intended Users-ETD developers, ETD vendors, ETD buyers, ETD testers, ETD users (first responders, security screeners, and the military), and agencies responsible for public safety and enabling effective deterrents to terrorism.
1.5 While this test method may be applied to any detection technology that produces numerical output, the procedures have been designed for ion mobility spectrometry (IMS) based ETD systems and tested with low vapor pressure explosive compounds. Compounds are deposited as liquid solutions on swabs and dried before use. As some swabs are absorbent, this deposition procedure may not be optimal for those ETD technologies that rely on high coverage of analyte on the surface of the swab. Background interferences introduced to the test samples were representative of a variety of conditions expected during deployment, but these conditions were not intended as comprehensive in representing all possible scenarios. The user should be aware of the possibility that untested scenarios may lead to failure in the determination of a reliable LOD90 value.
1.6 Units-The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 8 on Hazards.
Standard Practice to Enhance Identification of Drug Names on Labels
$25.00 $50.00
Standard Practice for Time-to-Failure (Creep-Rupture) of Adhesive Joints Fabricated from EPDM Roof Membrane Material
Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems
$32.00 $65.00
Standard Test Method for Determining Fibrous Debris From Nonwoven Fabrics (Withdrawn 2008)
$29.00 $58.00