• ASTM E598-96(2002)

ASTM E598-96(2002)

Standard Test Method for Measuring Extreme Heat-Transfer Rates from High-Energy Environments Using a Transient, Null-Point Calorimeter

ASTM International, 10/10/1996

Publisher: ASTM

File Format: PDF

$30.00$60.00


Published:10/10/1996

Pages:10

File Size:1 file , 190 KB

Note:This product is unavailable in Russia, Ukraine, Belarus

1.1 This test method covers the measurement of the heat-transfer rate or the heat flux to the surface of a solid body (test sample) using the measured transient temperature rise of a thermocouple located at the null point of a calorimeter that is installed in the body and is configured to simulate a semi-infinite solid. By definition the null point is a unique position on the axial centerline of a disturbed body which experiences the same transient temperature history as that on the surface of a solid body in the absence of the physical disturbance (hole) for the same heat-flux input.

1.2 Null-point calorimeters have been used to measure high convective or radiant heat-transfer rates to bodies immersed in both flowing and static environments of air, nitrogen, carbon dioxide, helium, hydrogen, and mixtures of these and other gases. Flow velocities have ranged from zero (static) through subsonic to hypersonic, total flow enthalpies from 1.16 to greater than 4.65 x 101 MJ/kg (5 x 10 2 to greater than 2 x 104 Btu/lb.), and body pressures from 105 to greater than 1.5 x 10 7 Pa (atmospheric to greater than 1.5 x 10 2 atm). Measured heat-transfer rates have ranged from 5.68 to 2.84 x 10 2 MW/m² (5 x 10² to 2.5 104 Btu/ft²-sec).

1.3 The most common use of null-point calorimeters is to measure heat-transfer rates at the stagnation point of a solid body that is immersed in a high pressure, high enthalpy flowing gas stream, with the body axis usually oriented parallel to the flow axis (zero angle-of-attack). Use of null-point calorimeters at off-stagnation point locations and for angle-of-attack testing may pose special problems of calorimeter design and data interpretation.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

More ASTM standard pdf

ASTM C1356-07(2020)

ASTM C1356-07(2020)

Standard Test Method for Quantitative Determination of Phases in Portland Cement Clinker by Microscopical Point-Count Procedure

$25.00 $50.00

ASTM C732-17(2022)

ASTM C732-17(2022)

Standard Test Method for Aging Effects of Artificial Weathering on Latex Sealants

$24.00 $48.00

ASTM D2255/D2255M-09(2020)

ASTM D2255/D2255M-09(2020)

Standard Test Method for Grading Spun Yarns for Appearance

$34.00 $68.00

ASTM F1142-98(2007)

ASTM F1142-98(2007)

Standard Specification for Manhole Cover Assembly, Bolted, Semi-Flush, Oiltight and Watertight

$29.00 $58.00