Your shopping cart is empty!
ASTM International, 12/01/2016
Publisher: ASTM
File Format: PDF
$38.00$76.00
Published:01/12/2016
Pages:14
File Size:1 file , 330 KB
Note:This product is unavailable in Russia, Ukraine, Belarus
1.1 This master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel (PV) and support structure steels throughout a pressure vessel's service life (Fig. 1). Referenced documents are listed in Section 2. The summary information that is provided in Sections 3 and 4 is essential for establishing proper understanding and communications between the writers and users of this set of matrix standards. It was extracted from the referenced standards (Section 2) and references for use by individual writers and users. More detailed writers' and users' information, justification, and specific requirements for the individual practices, guides, and methods are provided in Sections 3 - 5. General requirements of content and consistency are discussed in Section 6.
1.2 This master matrix is intended as a reference and guide to the preparation, revision, and use of standards in the series.
1.3 To account for neutron radiation damage in setting pressure-temperature limits and making fracture analyses (1-12)2 and Guide E509), neutron-induced changes in reactor pressure vessel steel fracture toughness must be predicted, then checked by extrapolation of surveillance program data during a vessel's service life. Uncertainties in the predicting methodology can be significant. Techniques, variables, and uncertainties associated with the physical measurements of PV and support structure steel property changes are not considered in this master matrix, but elsewhere (2, 6, 7), (11-26), and Guide E509).
1.4 The techniques, variables and uncertainties related to (1) neutron and gamma dosimetry, (2) physics (neutronics and gamma effects), and (3) metallurgical damage correlation procedures and data are addressed in separate standards belonging to this master matrix (1, 17). The main variables of concern to (1), (2), and (3) are as follows:
1.4.1 Steel chemical composition and microstructure,
1.4.2 Steel irradiation temperature,
1.4.3 Power plant configurations and dimensions, from the core periphery to surveillance positions and into the vessel and cavity walls.
1.4.4 Core power distribution,
1.4.5 Reactor operating history,
1.4.6 Reactor physics computations,
1.4.7 Selection of neutron exposure units,
1.4.8 Dosimetry measurements,
1.4.9 Neutron special effects, and
1.4.10 Neutron dose rate effects.
1.5 A number of methods and standards exist for ensuring the adequacy of fracture control of reactor pressure vessel belt lines under normal and accident loads ((1, 7, 8, 11, 12, 14, 16, 17, 23-27), Referenced Documents: ASTM Standards (2.1), Nuclear Regulatory Documents (2.3) and ASME Standards (2.4)). As older LWR pressure vessels become more highly irradiated, the predictive capability for changes in toughness must improve. Since during a vessel's service life an increasing amount of information will be available from test reactor and power reactor surveillance programs, procedures to evaluate and use this information must be used (1, 2, 4-9, 11, 12
Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units
$33.00 $67.00
Standard Guide for Selection and Use of Portable Radiological Survey Instruments for Performing In Situ Radiological Assessments to Support Unrestricted Release from Further Regulatory Controls
$41.00 $83.00
Standard Practice for Application of Class PB Exterior Insulation and Finish Systems (EIFS) and EIFS with Drainage
$30.00 $60.00
Standard Test Method for Plasticizer Sorption of Poly(Vinyl Chloride) Resins Under Applied Centrifugal Force
$27.00 $54.00