• ASTM E720-11

ASTM E720-11

Standard Guide for Selection and Use of Neutron Sensors for Determining Neutron Spectra Employed in Radiation-Hardness Testing of Electronics

ASTM International, 06/01/2011

Publisher: ASTM

File Format: PDF

$33.00$67.00


Published:01/06/2011

Pages:12

File Size:1 file , 270 KB

Note:This product is unavailable in Russia, Ukraine, Belarus

1.1 This guide covers the selection and use of neutron-activation detector materials to be employed in neutron spectra adjustment techniques used for radiation-hardness testing of electronic semiconductor devices. Sensors are described that have been used at many radiation hardness-testing facilities, and comments are offered in table footnotes concerning the appropriateness of each reaction as judged by its cross-section accuracy, ease of use as a sensor, and by past successful application. This guide also discusses the fluence-uniformity, neutron self-shielding, and fluence-depression corrections that need to be considered in choosing the sensor thickness, the sensor covers, and the sensor locations. These considerations are relevant for the determination of neutron spectra from assemblies such as TRIGA- and Godiva-type reactors and from Californium irradiators. This guide may also be applicable to other broad energy distribution sources up to 20 MeV.

Note 1 - For definitions on terminology used in this guide, see Terminology E170.

1.2 This guide also covers the measurement of the gamma-ray or beta-ray emission rates from the activation foils and other sensors as well as the calculation of the absolute specific activities of these foils. The principal measurement technique is high-resolution gamma-ray spectrometry. The activities are used in the determination of the energy-fluence spectrum of the neutron source. See Guide E721.

1.3 Details of measurement and analysis are covered as follows:

1.3.1 Corrections involved in measuring the sensor activities include those for finite sensor size and thickness in the calibration of the gamma-ray detector, for pulse-height analyzer deadtime and pulse-pileup losses, and for background radioactivity.

1.3.2 The primary method for detector calibration that uses secondary standard gamma-ray emitting sources is considered in this guide and in General Methods E181. In addition, an alternative method in which the sensors are activated in the known spectrum of a benchmark neutron field is discussed in Guide E1018.

1.3.3 A data analysis method is presented which accounts for the following: detector efficiency; background subtraction; irradiation, waiting, and counting times; fission yields and gamma-ray branching ratios; and self-absorption of gamma rays and neutrons in the sensors.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

More ASTM standard pdf

ASTM C372-94(2007)

ASTM C372-94(2007)

Standard Test Method for Linear Thermal Expansion of Porcelain Enamel and Glaze Frits and Fired Ceramic Whiteware Products by the Dilatometer Method

$26.00 $52.00

ASTM F2088-08ae1

ASTM F2088-08ae1

Standard Consumer Safety Specification for Infant Swings

$29.00 $58.00

ASTM E947-83(1996)e1

ASTM E947-83(1996)e1

Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

$25.00 $50.00

ASTM D2421-02(2007)

ASTM D2421-02(2007)

Standard Practice for Interconversion of Analysis of C5 and Lighter Hydrocarbons to Gas-Volume, Liquid-Volume, or Mass Basis

$26.00 $52.00